Detection of the short-lived cation radical intermediate in the electrochemical oxidation of N,N-dimethylaniline by scanning electrochemical microscopy.

نویسندگان

  • Fahe Cao
  • Jiyeon Kim
  • Allen J Bard
چکیده

The short-lived intermediate N,N-dimethylaniline (DMA) cation radical, DMA(•+), was detected during the oxidation of DMA in MeCN with 0.1 M tetra-n-butylammonium hexafluorophosphate. The detection was accomplished at steady state by scanning electrochemical microscopy (SECM) with ultramicroelectrodes using the tip generation/substrate collection mode. Cyclic voltammetry (CV) with a 2 mm Pt electrode indicates that DMA oxidation in acetonitrile is followed by a dimerization and two electrochemical reactions, which is consistent with previous results. The DMA(•+) intermediate is detected by SECM, where the DMA(•+) generated at the ca. 500 nm radius Pt tip is collected on a 5 μm radius Pt substrate when the gap between the tip and the substrate is a few hundred nanometers. Almost all of the DMA(•+) is reduced at the substrate when the gap is 200 nm or less, yielding a dimerization rate constant of 2.5 × 10(8) M(-1)·s(-1) based on a simulation. This is roughly 3 orders of magnitude larger than the value estimated by fast-scan CV. We attribute this discrepancy to the effects of double-layer capacitance charging and adsorbed species in the high scan rate CV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Detection of Hydrazine Using a Copper oxide Nanoparticle Modified Glassy Carbon Electrode

Metallic copper nanoparticles modified glassy carbon electrode is fabricated by reduction of CuSO4 in the presence of cetyltrimethylammonium bromide (CTAB) through potentiostatic method. As-prepared nanoparticles are characterized by scanning electron microscopy and electrochemical methods. Copper oxide modified glassy carbon electrode (nano-CuO/MGCE) is prepared using consecutive potential sca...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Electrochemical determination of gallic acid in Camellia sinensis, Viola odorata, Commiphora mukul, and Vitex agnus-castus by MWCNTs-COOH modified CPE

Gallic acid (GA) is the main phenolic antioxidant which has been subjected of many studies because of its important biological properties including anticancer, anti-inflammatory and antimicrobial activities as well as free radicals scavenger and cardiovascular diseases protector. Hereupon, fabricating a selective and sensitive sensor for GA detection and measurement is an important issue. In th...

متن کامل

Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

A graphene nanosheets (GNS) film coated glassy carbon electrode (GCE) was fabricated for sensitive determination of tyrosine (Tyr). The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalyt...

متن کامل

Electrochemical studies of guanosine in DMF and detection of its radical cation in a scanning electrochemical microscopy nanogap experiment.

This communication reports the findings of the investigation of the electrochemical (EC) oxidation of the important bimolecular guanosine (Gs) by scanning electrochemical microscopy (SECM) using carbon fiber ultramicroelectrodes (CF-UMEs) as the probe and substrate. The first attempt is to try to gain a steady-state voltammogram for EC oxidation of Gs at the CF-UME probe in aqueous buffer solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 52  شماره 

صفحات  -

تاریخ انتشار 2014